Inference re Epidemiologic Parameter: Rate or Incidence Density

Theoretical: Rate or $I D$ or λ
Empirical: $\quad c$ cases in $P T$ population-time units : $\widehat{I D}=\hat{\lambda}=c \div P T$;
Model: $\quad C \sim \operatorname{Poisson}(\mu)$, where $\mu=\lambda \times P T ; \quad c$: realization of C
P-value: $\quad \mathrm{H}_{0}: I D=I D_{0}, \lambda=\lambda_{0} ; \rightarrow \mu=\lambda_{0} \times P T=\mu_{0} ;$ Exact

- $P\left[C \leq c \& C \geq c \mid \mu_{\text {null }}\right]$ (lower \& upper-tails) Approx.
- N'l Approx. to distr'n of C or transform, $t(C)$, of C

CI 100(1- α)\%: Exact

- $P\left[C \geq c \mid \mu_{L}\right]=\alpha / 2 ; P\left[C \leq c \mid \mu_{U}\right]=\alpha / 2 ; \rightarrow\left\{\mu_{L}, \mu_{U}\right\} \div P T$ Approx.
- reverse transform of $c i=\left\{t(c) \mp z_{a / 2} \times S E[t(c)]\right\} ; c i \div P T$

transform	$\underline{t(c)}$	$\underline{S E[t(c)]=\operatorname{Var}^{1 / 2}}$		$\underline{C I=\text { reverse of } c i}$
identity	c	$c^{1 / 2}$		n/a
\log	$\log [c]$	$\{1 / c\}^{1 / 2}$		$e^{\{c i\}}$ or $\exp \{c i\}$
sqrt	\sqrt{c}	$\{0.25\}^{1 / 2}=0.5$		$\left\{\sqrt{c} \mp 0.5 z_{\alpha / 2}\right\}^{2}$

Notes:
[1] "Rate" in the incidence density sense.
$[2-4]$ helps to separate obs'd \& exp'd numerator, $\mu \& c$, from rate $(I D, \lambda, \hat{\lambda}) . \mu=\lambda \times P T$
[3] We could use the usual ' Y ' as the numerator (i.e., the count) but ' C ' more meaningful.
[5] Interested in λ, not μ, but it is C which has the Poisson distribution!
[7] ppois (c, μ) \& 1-ppois (c-1, μ) in R; Poisson(c, μ, T) in Excel; See c634 Resources.
[11] via:- Tables; cii PT c, poisson in Stata; pois.exact in epitools in R; etc.
[11] via trial \& error using ppois or Poisson; or exactly using Poisson \Leftrightarrow Chi-sq link.
[11\&13] Note that $C I$ for λ or $I D$ is of the form $\{C I$ for $\mu\} \div P T$.
[13] Using ' $t($)' as shorthand for a generic 'transform' or 'function of'.
[14] These transforms will be called 'links' when we come to generalized linear models.
[15] The variance of a Poisson random variable is a function only of the mean μ.
[15] Rothman2002 ('BabyRothman') p132 uses identity link, i.e. untransformed version.
[16] Log link typically used for rate ratio; makes more sense than identity link for 1 rate.
[17] Variance-stabilizing transformation.

1] Comparison of ID's or Rates in index (1) vs. reference (0) category

$$
\begin{aligned}
& \text { Theoretical: } \quad \lambda_{1} \& \lambda_{0} \rightarrow \lambda_{1}-\lambda_{0}(I D D) ; \quad \lambda_{1} \div \lambda_{0}(I D R) \\
& \text { Empirical: } \quad c_{1} / P T_{1} \& c_{0} / P T_{0} \rightarrow \hat{\lambda}_{1}-\hat{\lambda}_{0} ; \hat{\lambda}_{1} \div \hat{\lambda}_{0} \\
& \text { 4] Model: } \quad c_{i} \sim \operatorname{Poisson}\left(\mu_{i}=\lambda_{i} \times P T\right), i=0,1 ; c_{1} \text { independent of } c_{0} \text {. } \\
& \text { P-value: } \quad \mathrm{H}_{0}: I D D=0 ; I D R=1 ; \\
& \text { Exact } \\
& \text { - } c_{1} \mid\left(c_{1}+c_{0}\right) \sim \operatorname{Binomial}\left({ }^{\prime \prime} n^{\prime \prime}=c_{1}+c_{0}, \pi=P T_{1} /\left\{P T_{1}+P T_{0}\right\}\right) \\
& \text { Approx. [using the } \hat{\lambda}_{i} \text { 's, or transforms, } t\left(\hat{\lambda}_{i}\right) \text {, of them] } \\
& \bullet z=\sqrt{X^{2}}=\left\{t\left(\hat{\lambda}_{1}\right)-t\left(\hat{\lambda}_{0}\right)\right\} /\left\{\operatorname{Var}_{H_{0}}\left[t\left(\hat{\lambda}_{1}\right)\right]+\operatorname{Var}_{H_{0}}\left[t\left(\hat{\lambda}_{0}\right)\right]\right\}^{1 / 2}
\end{aligned}
$$

Exact - IDR only

- $I D R_{L}: P\left[\geq c_{1} \mid I D R_{L}\right]=\alpha / 2 ; I D R_{U}:-$ similarly Approx. - both IDD and IDR: ci on t scale \rightarrow CI on desired scale
- ci: $\left\{t\left(\hat{\lambda_{1}}\right)-t\left(\hat{\lambda_{0}}\right) \pm z_{a / 2}\left(\operatorname{Var}\left[t\left(\hat{\lambda_{1}}\right)\right]+\operatorname{Var}\left[t\left(\hat{\lambda_{0}}\right)\right]\right)^{1 / 2}\right\} \rightarrow C I$
measure transform $t(\hat{\lambda}) \quad \underline{c i \rightarrow C I}$ test-based* CI
$\begin{array}{lllll}\text { ID Diff. } & \text { identity } & \hat{\lambda} & \mathrm{n} / \mathrm{a} & \widehat{I D D} \times\left(1 \pm z_{\alpha / 2} / X\right) \\ \text { ID ́atio } & \log & \log [\hat{\lambda}] & e^{c i} & \widehat{I D R}\left(1 \pm z_{\alpha / 2} / X\right)\end{array}$

Notes:

[4] Assuming independent samples.
[7] [11] Fixing $c_{1}+c_{0}$ eliminates 1 nuisance parameter leaving just the ratio $I D R=\lambda_{1} / \lambda_{0}$.
[9] Again here, several equivalent versions of X^{2} for 2 counts. See jh c607/ch9.
... Don't force $c_{1}, c_{0}, P T_{1}, P T_{0}$ into a 2×2 table. See depiction as a ' 2×1 ' table (jh Ch 9).
[11] Use Binomial distr'n; π is determined by (is function of) the IDR \& ratio of the $P T$'s.
... Use def'n. of μ 's to show: $\pi=\mu_{1} /\left(\mu_{1}+\mu_{0}\right)=I D R /\left(I D R+P T_{0} / P T_{1}\right)$
... Lower limit π_{L} for $\pi \rightarrow$ lower limit for IDR: $\operatorname{IDR}_{L}=\left\{\pi_{L} /\left(1-\pi_{L}\right)\right\} \div\left\{P T_{1} / P T_{0}\right\}$ etc.
... Can use same Excel spreadsheet (jh c607 ch 8 resources) for exact test and exact CI.
... Via Stata immediate command iri $\mathrm{c}_{1} \mathrm{c}_{0} \mathrm{PT}_{1} \mathrm{PT}_{0}$ or rateratio.* in epitools
[14] Can also use a test-based CI for a risk difference/ratio or an odds ratio.
... Test-based CI's use the Variance under the Null, used when testing the null value. $[17] \operatorname{Var}[\log \{I \hat{D} R\}]$ had just 2 terms, $1 / c_{1}+1 / c_{0}$. Since $P T_{i}$ is just a constant, $\operatorname{Var}\left[\log \left(\hat{\lambda}_{i}\right)\right]=\operatorname{Var}\left[\log \left(c_{i} / P T_{i}\right)\right]=\operatorname{Var}\left[\log \left(c_{i}\right)\right]+\operatorname{Var}\left[\log \left(P T_{i}\right)\right]=1 / c_{i}+0=1 / c_{i}$. In contrast, the variance of a difference of 2 IDs depends on both the $2 c$'s and the $2 P T$'s. [15-17] Rothman2002Ch7 emphasizes ease of manual calculation over heuristics.

Comparison of ID's (Rates, λ 's) in index $_{(1)}$ vs. $\operatorname{ref}_{(0)}$ categories - stratified data
Empirical: $c_{1, s}$ cases in $P T_{1, s}$ and $c_{0, s}$ cases in $P T_{0, s}$ in stratum ' s ' $(s=1$,

ID Ratio (IDR): aliases: Rate Ratio; Incidence Ratio ('IR') - Rothman's term
(1) Antilog of weighted average ($W^{t d} A v e$.) of stratum-specific $\log \{\widehat{I D R}\}$'s

Weights $\left\{w_{1}, w_{2}, \ldots w_{s}, \ldots w_{S}\right\}$ are precision-based
$w_{s}=\frac{1 / V_{s}}{1 / V_{1}+\ldots+1 / V_{S}} ; V_{s}=\operatorname{Var}\left[\log \left\{\widehat{I D R}_{s}\right\}\right]=1 / c_{1, s}+1 / c_{0, s}$
Point Estimate: $\widetilde{I D R}=\exp \left[\sum_{s} w_{s} \times \log \left\{\widehat{I D R}_{s}\right\}\right]=\exp \left[W^{t d}\right.$ Ave. $]$
Variance of $W^{t d}$ Ave : Var $=1 /\left\{\sum_{s} 1 / V_{s}\right\} ; \quad S E=\operatorname{Var}^{1 / 2}$
CI: $\exp \left[W^{t d} A v e \mp z_{\alpha / 2} \times S E\left\{W^{t d} A v e\right\}\right]=\widetilde{I D R} \div \times \exp \left[z_{\alpha / 2} \times S E\right]$
(2) Mantel-Haenszel Summary IDR See Rothman2002Ch8

No. cases, PT in stratum $s: c_{s}=c_{1, s}+c_{0, s} ; P T_{s}=P T_{1, s}+P T_{0, s}$
Point Estimate: $I \widetilde{D R_{M H}}=\frac{\sum_{s}\left\{c_{1, s} \times P T_{0, s}\right\} \div P T_{s}}{\sum_{s}\left\{c_{0, s} \times P T_{1, s}\right\} \div P T_{s}}=\frac{N u m_{M H}}{D e n_{M H}}$
Variance of $\log \left[I \widetilde{D R_{M H}}\right]: \operatorname{Var}=\frac{\sum_{s}\left\{c_{s} \times P T_{1, s} \times P T_{0, s}\right\} \div P T_{s}^{2}}{N u m_{M H} \times D e n_{M H}}$
CI: $\exp \left[\log \left[I \widetilde{D R_{M H}}\right] \mp z_{\alpha / 2} \times \operatorname{Var}^{1 / 2}\right]=I \widetilde{D R_{M H}} \div \times{ }^{\prime}$ M.E.'
ID Diff. (IDD): aliases: Rate Diff.; Incidence Difference ('ID') - Rothman's term
$\underline{\text { Precision-weighted average of stratum-specific } \widehat{I D D} \text { 's }}$ See Rothman2002Ch8
$w_{s}=\frac{Q_{s}}{Q_{1}+\ldots+Q_{S}} ; Q_{s}=1 /\left(1 / P T_{1, s}+1 / P T_{0, s}\right) ; V_{s}=\frac{c_{1, s}}{P T_{1, s}^{2}}+\frac{c_{0, s}}{P T_{0, s}^{2}}$
Point Estimate: $\widetilde{I D D}=\sum_{s} w_{s} \times \widehat{I D D}_{s}$
CI: $\widetilde{I D R} \mp z_{\alpha / 2} \times S E ; S E=\operatorname{Var}^{1 / 2} ; \operatorname{Var}=\sum_{s} w_{s}^{2} \times V_{s}$.

Assuming a single (i.e., summary) Rate Ratio or Rate Difference makes sense.

Model: $2 S$ indep't rv's $c_{0, s} \ldots c_{1, S}: c_{i, s} \sim \operatorname{Poisson}\left(\mu_{i, s}\right) ; \mu_{i, s}=\lambda_{i, s} \times P T_{i, s}$.

As in Woolf's formula for combining $\widehat{O R}$ s in a c-c study

N.B.: standardization uses another type of weights (NOT precision-based). Woolf's variance formula has 2 additional terms; these 2 terms pay for the uncertainty in estimating the PT's using a 'denominator' ('control') series. Sampling variation of $\log [\widehat{I D R}]$'s more Gaussian than $\widehat{I D R}$ s themselves.

Think of $\exp \left[z_{\alpha / 2} \times S E\right]$ as a 'multiplicative' Margin of Error (M.E.) Instead of $\hat{\theta}$ minus/plus M.E., it's $\hat{\theta}$ divided/multiplied by M.E..

The 1959 MH summary measure was for ORs; for many years, its variance defied statisticians. $\operatorname{Var}\left[\log \left[I \widetilde{D R_{M H}}\right]\right]$ was less challenging.

Mantel's ' 1 ratio' formulation gives stability - no averaging of S unstable ratios!

Rothman's formulation seems more suited for his 1970s hand calculator.
The formula in Table 8-4 is incorrect. For correct version see the p156 e.g.
Again, notice the multiplicative 'M.E.': point est. $\div \times$ M.E. instead of $\mp M . E$.

Standardization uses another type of weights.
Q_{s} is proportional to the information (inverse of variance) in stratum s.

Again, Rothman's eqn. 8-4 seems designed to minimize calculator keystrokes.

